[ML News] Uber: Deep Learning for ETA | MuZero Video Compression | Block-NeRF | EfficientNet-X
Yannic Kilcher
#mlnews #muzero #nerf
Your regularly irregular updates on everything new in the ML world! Merch: http://store.ykilcher.com
OUTLINE: 0:00 - Intro 0:15 - Sponsor: Weights & Biases 2:15 - Uber switches from XGBoost to Deep Learning for ETA prediction 5:45 - MuZero advances video compression 10:10 - Learned Soft Prompts can steer large language models 12:45 - Block-NeRF captures entire city blocks 14:15 - Neural Architecture Search considers underlying hardware 16:50 - Mega-Blog on Self-Organizing Agents 18:40 - Know Your Data (for Tensorflow Datasets) 20:30 - Helpful Things
Sponsor: Weights & Biases https://wandb.me/yannic
References: https://docs.wandb.ai/guides/integrations/other/openai https://colab.research.google.com/github/wandb/examples/blob/master/colabs/openai/Fine_tune_GPT_3_with_Weights_%26_Biases.ipynb#scrollTo=rJdQqrC8Ablo https://wandb.ai/borisd13/GPT-3/reports/Fine-Tuning-Tips-and-Exploration-on-OpenAI-s-GPT-3---VmlldzoxNDYwODA2
Uber switches from XGBoost to Deep Learning for ETA prediction https://eng.uber.com/deepeta-how-uber-predicts-arrival-times/?utm_source=pocket_mylist
MuZero advances video compression https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world https://storage.googleapis.com/deepmind-media/MuZero/MuZero%20with%20self-competition.pdf
Learned Soft Prompts can steer large language models https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html https://aclanthology.org/2021.emnlp-main.243/
Block-NeRF captures entire city blocks https://arxiv.org/abs/2202.05263 https://arxiv.org/pdf/2202.05263.pdf https://waymo.com/intl/zh-cn/research/block-nerf/
Neural Architecture Search considers underlying hardware https://ai.googleblog.com/2022/02/unlocking-full-potential-of-datacenter.html https://openaccess.thecvf.com/content/CVPR2021/papers/Li_Searching_for_Fast_Model_Families_on_Datacenter_Accelerators_CVPR_2021_paper.pdf
Mega-Blog on Self-Organizing Agents https://developmentalsystems.org/sensorimotor-lenia/ https://flowers.inria.fr/
Know Your Data (for Tensorflow Datasets) https://knowyourdata-tfds.withgoogle.com/#dataset=pass&filters=kyd%2Fcloud_vision%2Fface_probability:9&tab=RELATIONS&item=train%5B89%25%3A91%25%5D_27143&expanded_groups=cloud_vision https://knowyourdata.withgoogle.com/
Helpful Things https://twitter.com/casualganpapers/status/1490318575873241091 https://www.reddit.com/r/MachineLearning/comments/snmtzn/r_phd_thesis_on_neural_differential_equations/ https://arxiv.org/abs/2202.02435 https://github.com/vicariousinc/PGMax https://www.vicarious.com/posts/pgmax-factor-graphs-for-discrete-probabilistic-graphical-models-and-loopy-belief-propagation-in-jax/?utm_content=197542312&utm_medium=social&utm_source=twitter&hss_channel=tw-204185426 https://diambra.ai/to ... https://www.youtube.com/watch?v=fEKZC9mta8w
474456051 Bytes