I4 Bayesian parameter estimation for a normal model (part 1/2)
Jarad Niemi
Bayesian parameter estimation for a normal model using default prior is presented. Marginal posteriors for the mean and variance are presented. Expectations, densities, and credible intervals for those posterior distributions are discussed.
part 2: https://youtu.be/zAW9MrxuWd4
Probability playlist: https://www.youtube.com/playlist?list=PLFHD4aOUZFp1FxJs9BG5Sbsy6NvCO3Qb1 Statistics playlist: https://www.youtube.com/playlist?list=PLFHD4aOUZFp1PZC6SgtuS-ESq4ti1GEFj
STAT 587: https://www.jarad.me/courses/stat587Eng/ STAT 587 Videos: https://www.jarad.me/courses/stat587Eng/slides/ Slides: https://www.jarad.me/courses/stat587Eng/slides/Inference/I04-Normal_model/I04-Normal_model.pdf
Amazon affiliate links to props: Tetris light: https://amzn.to/3g8BXde Galton Board: https://amzn.to/3gUdLfa Jumbo penny: https://amzn.to/3g8BXde Jumbo quarter: ?? DCI Science Quiz Wal Clock: https://amzn.to/3g8BXde Foam dice: https://amzn.to/3g8BXde TIX LED Clock: https://www.geekalerts.com/tix-led-clock/ Bicycle Playing Cards: https://amzn.to/2E36Na8 Recording in progress door hang sign: https://amzn.to/3la32Av ... https://www.youtube.com/watch?v=L5pg_cx2nNU
37031955 Bytes