IP Subnetting Explained: Packet Tracer labs. Answers Part 4
David Bombal
Packet Tracer file (PT Version 7.1): https://bit.ly/2sO7QBV Get the Packet Tracer course for only $10 by clicking here: https://goo.gl/vikgKN Get my ICND1 and ICND2 courses for $10 here: https://goo.gl/XR1xm9 (you will get ICND2 as a free bonus when you buy the ICND1 course).
For lots more content, visit http://www.davidbombal.com - learn about GNS3, CCNA, Packet Tracer, Python, Ansible and much, much more.
#CCNA #PacketTracer #CCENT
Subnetting allows you to create multiple logical networks that exist within a single Class A, B, or C network. If you do not subnet, you are only able to use one network from your Class A, B, or C network, which is unrealistic.
Each data link on a network must have a unique network ID, with every node on that link being a member of the same network. If you break a major network (Class A, B, or C) into smaller subnetworks, it allows you to create a network of interconnecting subnetworks. Each data link on this network would then have a unique network/subnetwork ID. Any device, or gateway, that connects n networks/subnetworks has n distinct IP addresses, one for each network / subnetwork that it interconnects.
In order to subnet a network, extend the natural mask with some of the bits from the host ID portion of the address in order to create a subnetwork ID.
An IP address is an address used in order to uniquely identify a device on an IP network. The address is made up of 32 binary bits, which can be divisible into a network portion and host portion with the help of a subnet mask. The 32 binary bits are broken into four octets (1 octet = 8 bits). Each octet is converted to decimal and separated by a period (dot). For this reason, an IP address is said to be expressed in dotted decimal format (for example, 172.16.81.100). The value in each octet ranges from 0 to 255 decimal, or 00000000 - 11111111 binary.
Here is how binary octets convert to decimal: The right most bit, or least significant bit, of an octet holds a value of 20. The bit just to the left of that holds a value of 2^1. This continues until the left-most bit, or most significant bit, which holds a value of 2^7.
Transcription:
So, on this subnet 192.168.1.128 /26, we’ve been told to configure the router with the last IP address in the subnet. Now the next subnet is 192. So the broadcast address for the subnet will be 191, which means that this router can be configured with 190. Have a look at to the previous videos in this series if you’re not sure how I worked that out.
So IP address 192.168.1.192 is the next subnet, 191 is the broadcast, 190 is the last IP address in the subnet, subnet mask is that and we know that from our previous calculations. The switch needs to use the second IP address in the subnet. The router is configured with 190. S ... https://www.youtube.com/watch?v=N5N4C1Kr1y0
57393168 Bytes