I Built a Document Summarizer with LangChain Quickstart Retrieval Chapter
Charming Data
Deep dive into the Retrieval Chain section of the LangChain Docs. We'll review this section and explain how embeddings work together with LLMs and Prompts.
The Code: https://github.com/Coding-with-Adam/Dash-by-Plotly/tree/master/LangChain/Quickstart
Retrieval Chain Quickstart chapter: https://python.langchain.com/docs/get_started/quickstart#retrieval-chain
Learn LangChain: https://charming-data.circle.so/c/langchain-education/
Video layout:
00:00 - Doc Summarizer App
04:20 - Learn AI on Charming Data
04:58 - Retrieval Chain Demo
05:55 - Add openai Key to App
06:43 - WebBaseLoader
07:40 - OpenAIEmbeddings
09:54 - Prompt
10:36 - Invoking Chain
š Your support keeps Charming Data running, which is proudly a 100% member-supported educational channel: Charming Data Community: https://charming-data.com/ GitHub: https://github.com/sponsors/Coding-with-Adam YouTube: https://www.youtube.com/channel/UCqBFsuAz41sqWcFjZkqmJqQ/join LinkedIn: https://www.linkedin.com/in/adam-schroeder-17b5a819/ ... https://www.youtube.com/watch?v=qzrkhDrFcJs
135058751 Bytes