Diffusion Models (1/2) - Theory and importance with code implementations
Prodramp
In this part 1/2 video, you will learn Diffusion Models with their theory and importance in text-to-image AI research along with various code implementations located at the GitHub.
Part 1 (This Video): (https://youtu.be/W2udr9Z73sA)
- Theory behind Diffusion
- How it works?
- Why it is important?
- Various implementation available in GitHub
Part 2: (https://youtu.be/0uNri-aLk_o)
- Probabilistic Diffusion Models Code Implementation
- Prebuilt Models Note: - Try both in Google Colab Notebook
GitHub Resources: https://github.com/prodramp/DeepWorks/tree/main/DiffusionModels
ā¬ā¬ā¬ā¬ā¬ā¬ ā° TUTORIAL TIME STAMPS ā° ā¬ā¬ā¬ā¬ā¬ā¬
- (00:00) Diffusion Model Intro
- (02:00) Part 1/2 Contents
- (04:05) Diffusion Model Theory
- (08:15) Importance
- (11:19) Various Code Implementations
- (13:18) Resources at GitHub
Connect
- Prodramp LLC (@prodramp)
- Website - https://prodramp.com
- LinkedIn - https://www.linkedin.com/company/prodramp
- GitHub- https://github.com/prodramp/
- AngelList - https://angel.co/company/prodramp
- Facebook - https://www.facebook.com/Prodramp
Content Creator: Avkash Chauhan (@avkashchauhan)
Tags: #diffusion #ai #deeplearning #cnn #ml #lime #aicloud #h2oai #driverlessai #machinelearning #cloud #mlops #model #collaboration #deeplearning #modelserving #modeldeployment #pytorch #datarobot #datahub #streamlit #modeltesting #codeartifact #dataartifact #modelartifact #onnx #aws #kaggle #mapbox #lightgbm #xgboost #classification #dataengineering #pandas #keras #tensorflow #tensorboard #cnn #prodramp #avkashchauhan #LIME #mli #xai ... https://www.youtube.com/watch?v=W2udr9Z73sA
111900975 Bytes