Möbius transformation and Steiner's Porism in desmos
MathEnthusiast314
Idea and inspiration from https://www.youtube.com/watch?v=fKAyaP8IzlE
A Möbius transformation is obtained by an inverse stereographic projection of the complex plane onto a sphere in R³, followed by a rigid motion of the sphere and a stereographic projection back to the plane. Stereographic projection of a sphere and hypersphere: https://www.youtube.com/watch?v=_EZKMnVV9BY, https://www.youtube.com/watch?v=qOAP0DtUYGs
⭐Tags/Chapters ⭐ ⌨️ (0:00) "Hello World" + Möbius transformation intuition for angle=3.14 - https://www.desmos.com/calculator/m1oec8pwlj ⌨️ (0:14) "Hello World" + Möbius transformation animation across angle∈[0,2π] - https://www.desmos.com/calculator/hzxqyrcnwu ⌨️ (0:37) Steiner's Porism intuition for angle = 1.87 - https://www.desmos.com/calculator/zotmh5ackw ⌨️ (0:54) Steiner's Porism animation - https://www.desmos.com/calculator/mrf6i25bta ⌨️ (1:16) Steiner Chain Fractal - https://www.desmos.com/calculator/tmuenzcxvz ⌨️ (1:40) Thanks for watching:) - https://www.desmos.com/calculator/vq9d1jqgrw
https://www.reddit.com/r/desmos/comments/qwmfhw/möbius_transformation/
... Join the Discord: https://discord.gg/bNSNdp2XGa Twitter: https://twitter.com/enthusiast314 Reddit: https://www.reddit.com/user/MathEnthusiast314/ ... https://www.youtube.com/watch?v=Zz58S4OA3vY
37816753 Bytes