Chatbots with RAG: LangChain Full Walkthrough
James Briggs
In this video, we work through building a chatbot using Retrieval Augmented Generation (RAG) from start to finish. We use OpenAI's gpt-3.5-turbo Large Language Model (LLM) as the "engine", we implement it with LangChain's ChatOpenAI class, use OpenAI's text-embedding-ada-002 for embedding, and the Pinecone vector database as our knowledge base.
š Code: https://github.com/pinecone-io/examples/blob/master/learn/generation/langchain/rag-chatbot.ipynb
š² Subscribe for Latest Articles and Videos: https://www.pinecone.io/newsletter-signup/
šš¼ AI Consulting: https://aurelio.ai
š¾ Discord: https://discord.gg/c5QtDB9RAP
Twitter: https://twitter.com/jamescalam LinkedIn: https://www.linkedin.com/in/jamescalam/
00:00 Chatbots with RAG 00:59 RAG Pipeline 02:35 Hallucinations in LLMs 04:08 LangChain ChatOpenAI Chatbot 09:11 Reducing LLM Hallucinations 13:37 Adding Context to Prompts 17:47 Building the Vector Database 25:14 Adding RAG to Chatbot 28:52 Testing the RAG Chatbot 32:56 Important Notes when using RAG
#artificialintelligence #nlp #ai #langchain #openai #vectordb ... https://www.youtube.com/watch?v=LhnCsygAvzY
276922077 Bytes