Llama - Code Llama 4 LLM from Scratch - Full Course
DevOps
This course is a guide to understanding and implementing Llama 4. @vukrosic will teach you how to code Llama 4 from scratch.
Code and presentations: https://github.com/vukrosic/courses
Code DeepSeek V3 From Scratch: https://youtu.be/5avSMc79V-w
⭐️ Contents ⭐️
- 0:00:00 Introduction to the course
- 0:00:15 Llama 4 Overview and Ranking
- 0:00:26 Course Prerequisites
- 0:00:43 Course Approach for Beginners
- 0:01:27 Why Code Llama from Scratch?
- 0:02:20 Understanding LLMs and Text Generation
- 0:03:11 How LLMs Predict the Next Word
- 0:04:13 Probability Distribution of Next Words
- 0:05:11 The Role of Data in Prediction
- 0:05:51 Probability Distribution and Word Prediction
- 0:08:01 Sampling Techniques
- 0:08:22 Greedy Sampling
- 0:09:09 Random Sampling
- 0:09:52 Top K Sampling
- 0:11:02 Temperature Sampling for Controlling Randomness
- 0:12:56 What are Tokens?
- 0:13:52 Tokenization Example: "Hello world"
- 0:14:30 How LLMs Learn Semantic Meaning
- 0:15:23 Token Relationships and Context
- 0:17:17 The Concept of Embeddings
- 0:21:37 Tokenization Challenges
- 0:22:15 Large Vocabulary Size
- 0:23:28 Handling Misspellings and New Words
- 0:28:42 Introducing Subword Tokens
- 0:30:16 Byte Pair Encoding (BPE) Overview
- 0:34:11 Understanding Vector Embeddings
- 0:36:59 Visualizing Embeddings
- 0:40:50 The Embedding Layer
- 0:45:31 Token Indexing and Swapping Embeddings
- 0:48:10 Coding Your Own Tokenizer
- 0:49:41 Implementing Byte Pair Encoding
- 0:52:13 Initializing Vocabulary and Pre-tokenization
- 0:55:12 Splitting Text into Words
- 1:01:57 Calculating Pair Frequencies
- 1:06:35 Merging Frequent Pairs
- 1:10:04 Updating Vocabulary and Tokenization Rules
- 1:13:30 Implementing the Merges
- 1:19:52 Encoding Text with the Tokenizer
- 1:26:07 Decoding Tokens Back to Text
- 1:33:05 Self-Attention Mechanism
- 1:37:07 Query, Key, and Value Vectors
- 1:40:13 Calculating Attention Scores
- 1:41:50 Applying Softmax
- 1:43:09 Weighted Sum of Values
- 1:45:18 Self-Attention Matrix Operations
- 1:53:11 Multi-Head Attention
- 1:57:55 Implementing Self-Attention
- 2:10:40 Masked Self-Attention
- 2:37:09 Rotary Positional Embeddings (RoPE)
- 2:38:08 Understanding Positional Information
- 2:40:58 How RoPE Works
- 2:49:03 Implementing RoPE
- 2:56:47 Feed-Forward Networks (FFN)
- 2:58:50 Linear Layers and Activations
- 3:02:19 Implementing FFN
And if you want to code DeepSeek V3 from scratch, here's the Full Course: https://youtu.be/5avSMc79V-w
❤️ Support for this channel comes from our friends at Scrimba – the coding platform that's reinvented interactive learning: https://scrimba.com/freecodecamp
🎉 Thanks to our Champion and Sponsor supporters: 👾 Drake Milly 👾 Ulises Moralez 👾 Goddard Tan 👾 David MG 👾 Matthew Springman 👾 Claudio 👾 Oscar R. 👾 jedi-or-sith 👾 Nattira Maneerat 👾 Justin Hual
Learn to code for free and get a developer job: https://www.freecodecamp.org Read hundreds of articles on programming: https://freecodecamp.org/news
823437606 Bytes