44:23
#AI & #ML Lecture 14: Logistic Regression & Ensemble Learning - Bagging & Boosting - AdaBoost
SECourses
Shared 16/01/2021
01:29:24
#AI & #ML Lecture 13: Conditional Probability & Probabilistic Models, Joint Distribution, Random Var
SECourses
Shared 10/01/2021
01:46:25
#AI & #ML Lecture 15: Unsupervised Learning, Clustering Algorithms, Hierarchical Clustering, K-Means
SECourses
Shared 16/01/2021
57:48
#AI & #ML Lecture 12 : Large & Soft Margin Classifiers, Support Vector Machines (SVM), Loss Function
SECourses
Shared 04/01/2021
01:14:36
#AI & #ML Lecture 11 : Gradient Descent, Loss Function, Sparse & Missing Data, Regularization, L1 L2
SECourses
Shared 29/12/2020
01:20:18
#AI & #ML Lecture 10: What Is Learning To Rank (LTR), Pointwise, Pairwise, and Listwise Ranking
SECourses
Shared 19/12/2020
01:48:42
#AI & #ML Lecture 9 : Supervised Evaluation, K-Fold Cross Validation & Multiclass Classification
SECourses
Shared 13/12/2020
01:57:12
#AI & #ML Lecture 5 : Learning a Linear Classifier, Perceptron Learning & Hyperplanes, KNN, Neural
SECourses
Shared 08/11/2020
01:38:39
#AI & #ML Lecture 4 : Proper Model Training & Testing, KNN Algorithm & Practical Example, Accuracy
SECourses
Shared 30/10/2020
01:57:16
#AI & #ML Lecture 3 : Practical Example of Decision Trees with C# and Accord.NET, Cross Validation
SECourses
Shared 24/10/2020